Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
1.
Nat Commun ; 15(1): 3142, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605031

ABSTRACT

TRAAK, TREK-1, and TREK-2 are mechanosensitive two-pore domain K+ (K2P) channels that contribute to action potential propagation, sensory transduction, and muscle contraction. While structural and functional studies have led to models that explain their mechanosensitivity, we lack a quantitative understanding of channel activation by membrane tension. Here, we define the tension response of mechanosensitive K2Ps using patch-clamp recording and imaging. All are low-threshold mechanosensitive channels (T10%/50% 0.6-2.7 / 4.4-6.4 mN/m) with distinct response profiles. TRAAK is most sensitive, TREK-1 intermediate, and TREK-2 least sensitive. TRAAK and TREK-1 are activated broadly over a range encompassing nearly all physiologically relevant tensions. TREK-2, in contrast, activates over a narrower range like mechanosensitive channels Piezo1, MscS, and MscL. We further show that low-frequency, low-intensity focused ultrasound increases membrane tension to activate TRAAK and MscS. This work provides insight into tension gating of mechanosensitive K2Ps relevant to understanding their physiological roles and potential applications for ultrasonic neuromodulation.


Subject(s)
Potassium Channels, Tandem Pore Domain , Potassium Channels, Tandem Pore Domain/genetics , Action Potentials , Sensation , Muscle Contraction
3.
Eur J Med Res ; 29(1): 257, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689322

ABSTRACT

BACKGROUND: This study aimed to explore the expression, molecular mechanism and its biological function of potassium two pore domain channel subfamily K member 1 (KCNK1) in bladder cancer (BC). METHODS: We integrated large numbers of external samples (n = 1486) to assess KCNK1 mRNA expression levels and collected in-house samples (n = 245) for immunohistochemistry (IHC) experiments to validate at the KCNK1 protein level. Single-cell RNA sequencing (scRNA-seq) analysis was performed to further assess KCNK1 expression and cellular communication. The transcriptional regulatory mechanisms of KCNK1 expression were explored by ChIP-seq, ATAC-seq and ChIA-PET data. Highly expressed co-expressed genes (HECEGs) of KCNK1 were used to explore potential signalling pathways. Furthermore, the immunoassay, clinical significance and molecular docking of KCNK1 were calculated. RESULTS: KCNK1 mRNA was significantly overexpressed in BC (SMD = 0.58, 95% CI [0.05; 1.11]), validated at the protein level (p < 0.0001). Upregulated KCNK1 mRNA exhibited highly distinguishing ability between BC and control samples (AUC = 0.82 [0.78-0.85]). Further, scRNA-seq analysis revealed that KCNK1 expression was predominantly clustered in BC epithelial cells and tended to increase with cellular differentiation. BC epithelial cells were involved in cellular communication mainly through the MK signalling pathway. Secondly, the KCNK1 transcription start site (TSS) showed promoter-enhancer interactions in three-dimensional space, while being transcriptionally regulated by GRHL2 and FOXA1. Most of the KCNK1 HECEGs were enriched in cell cycle-related signalling pathways. KCNK1 was mainly involved in cellular metabolism-related pathways and regulated cell membrane potassium channel activity. KCNK1 expression was associated with the level of infiltration of various immune cells. Immunotherapy and chemotherapy (docetaxel, paclitaxel and vinblastine) were more effective in BC patients in the high KCNK1 expression group. KCNK1 expression correlated with age, pathology grade and pathologic_M in BC patients. CONCLUSIONS: KCNK1 was significantly overexpressed in BC. A complex and sophisticated three-dimensional spatial transcriptional regulatory network existed in the KCNK1 TSS and promoted the upregulated of KCNK1 expression. The high expression of KCNK1 might be involved in the cell cycle, cellular metabolism, and tumour microenvironment through the regulation of potassium channels, and ultimately contributed to the deterioration of BC.


Subject(s)
Gene Expression Regulation, Neoplastic , Potassium Channels, Tandem Pore Domain , Urinary Bladder Neoplasms , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Molecular Docking Simulation , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Signal Transduction , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
4.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L367-L376, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38252657

ABSTRACT

Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages (AMs) and bone marrow-derived macrophages (BMDMs) from wild-type (wt) and TREK-1-/- mice, we measured responses to inflammasome priming [using lipopolysaccharide (LPS)] and activation (LPS + ATP). We measured IL-1ß, caspase-1, and NLRP3 via ELISA and Western blot. A membrane-permeable potassium indicator was used to measure potassium efflux during ATP exposure, and a fluorescence-based assay was used to assess changes in membrane potential. Inflammasome activation induced by LPS + ATP increased IL-1ß secretion in wt AMs, whereas activation was significantly reduced in TREK-1-/- AMs. Priming of BMDMs using LPS was not affected by either genetic deficiency or pharmacological inhibition of TREK-1 with Spadin. Cleavage of caspase-1 following LPS + ATP treatment was significantly reduced in TREK-1-/- BMDMs. The intracellular potassium concentration in LPS-primed wt BMDMs was significantly lower compared with TREK-1-/- BMDMs or wt BMDMs treated with Spadin. Conversely, activation of TREK-1 with BL1249 caused a decrease in intracellular potassium in wt BMDMs. Treatment of LPS-primed BMDMs with ATP caused a rapid reduction in intracellular potassium levels, with the largest change observed in TREK-1-/- BMDMs. Intracellular K+ changes were associated with changes in the plasma membrane potential (Em), as evidenced by a more depolarized Em in TREK-1-/- BMDMs compared with wt, and Em hyperpolarization upon TREK-1 channel opening with BL1249. These results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.NEW & NOTEWORTHY Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages and bone marrow-derived macrophages from wild-type and TREK-1-/- mice, we measured responses to inflammasome priming (using LPS) and activation (LPS + ATP). Our results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.


Subject(s)
Inflammasomes , Potassium Channels, Tandem Pore Domain , Tetrahydronaphthalenes , Tetrazoles , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Potassium/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Mice, Knockout , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Macrophages/metabolism , Caspase 1/metabolism , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/metabolism , Interleukin-1beta/metabolism
5.
Neurosci Lett ; 821: 137613, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38157928

ABSTRACT

Increased concentrations of lactate (15-30 mM) are associated with and found to be neuroprotective in various brain pathophysiology. In our earlier studies we showed that high levels of lactate can increase TREK1 channel activity and expression within 1 h. TREK1 channels are two pore domain leak potassium ion channels that are upregulated during cerebral ischemia, epilepsy and other brain pathologies. They play a prominent neuroprotective role against excitotoxicity. Although it has been previously shown that chronic application of lactate (6 h) causes increased gene transcription and protein expression, we observe clustering of TREK1 channels that is dependent on time of exposure (3-6 h) and concentration of lactate (15-30 mM). Using immunofluorescence techniques and image analysis, we show that the clustering of TREK1 channels is dependent on the actin cytoskeletal network of the astrocytes. Clustering of TREK1 channels can augment astrocytic functions during pathophysiological conditions and have significant implications in lactate mediated neuroprotection.


Subject(s)
Astrocytes , Hippocampus , Lactic Acid , Neuroprotective Agents , Potassium Channels, Tandem Pore Domain , Animals , Rats , Astrocytes/drug effects , Astrocytes/metabolism , Brain Ischemia/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Lactic Acid/pharmacology , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Neuroprotective Agents/pharmacology , Rats, Wistar
6.
Exp Neurol ; 373: 114652, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103709

ABSTRACT

Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development.


Subject(s)
Neuronal Plasticity , Potassium Channels, Tandem Pore Domain , Rats , Animals , Neuronal Plasticity/physiology , Cerebral Cortex , Hippocampus/physiology , Potassium Channels, Tandem Pore Domain/genetics , Synaptic Transmission/physiology , Prefrontal Cortex , Antidepressive Agents/pharmacology , Long-Term Synaptic Depression/physiology
7.
J Mol Cell Cardiol ; 184: 26-36, 2023 11.
Article in English | MEDLINE | ID: mdl-37793594

ABSTRACT

RATIONALE: The neurokinin-III receptor was recently shown to regulate atrial cardiomyocyte excitability by inhibiting atrial background potassium currents. TASK-1 (hK2P3.1) two-pore-domain potassium channels, which are expressed atrial-specifically in the human heart, contribute significantly to atrial background potassium currents. As TASK-1 channels are regulated by a variety of intracellular signalling cascades, they represent a promising candidate for mediating the electrophysiological effects of the Gq-coupled neurokinin-III receptor. OBJECTIVE: To investigate whether TASK-1 channels mediate the neurokinin-III receptor activation induced effects on atrial electrophysiology. METHODS AND RESULTS: In Xenopus laevis oocytes, heterologously expressing neurokinin-III receptor and TASK-1, administration of the endogenous neurokinin-III receptor ligands substance P or neurokinin B resulted in a strong TASK-1 current inhibition. This could be reproduced by application of the high affinity neurokinin-III receptor agonist senktide. Moreover, preincubation with the neurokinin-III receptor antagonist osanetant blunted the effect of senktide. Mutagenesis studies employing TASK-1 channel constructs which lack either protein kinase C (PKC) phosphorylation sites or the domain which is regulating the diacyl glycerol (DAG) sensitivity domain of TASK-1 revealed a protein kinase C independent mechanism of TASK-1 current inhibition: upon neurokinin-III receptor activation TASK-1 channels are blocked in a DAG-dependent fashion. Finally, effects of senktide on atrial TASK-1 currents could be reproduced in patch-clamp measurements, performed on isolated human atrial cardiomyocytes. CONCLUSIONS: Heterologously expressed human TASK-1 channels are inhibited by neurokinin-III receptor activation in a DAG dependent fashion. Patch-clamp measurements, performed on human atrial cardiomyocytes suggest that the atrial-specific effects of neurokinin-III receptor activation on cardiac excitability are predominantly mediated via TASK-1 currents.


Subject(s)
Atrial Fibrillation , Potassium Channels, Tandem Pore Domain , Humans , Animals , Atrial Fibrillation/metabolism , Heart Atria/metabolism , Signal Transduction , Protein Kinase C/metabolism , Potassium/metabolism , Xenopus laevis/metabolism , Oocytes/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism
8.
Front Biosci (Landmark Ed) ; 28(3): 51, 2023 03 15.
Article in English | MEDLINE | ID: mdl-37005754

ABSTRACT

BACKGROOUND: At low extracellular potassium ([K+]e) conditions, human cardiomyocytes can depolarize to -40 mV. This is closely related to hypokalemia-induced fatal cardiac arrhythmia. The underlying mechanism, however, is still not well understood. TWIK-1 channels are background K+ channels that are highly expressed in human cardiomyocytes. We previously reported that TWIK-1 channels changed ion selectivity and conducted leak Na+ currents at low [K+]e. Moreover, a specific threonine residue (Thr118) within the ion selectivity filter was responsible for this altered ion selectivity. METHODS: Patch clamp were used to investigate the effects of TWIK-1 channels on the membrane potentials of cardiomyocytes in response to low [K+]e. RESULTS: At 2.7 mM [K+]e and 1 mM [K+]e, both Chinese hamster ovary (CHO) cells and HL-1 cells ectopically expressed human TWIK-1 channels displayed inward leak Na+ currents and reconstitute depolarization of membrane potential. In contrast, cells ectopically expressed human TWIK-1-T118I mutant channels that remain high selectivity to K+ exhibited hyperpolarization of membrane potential. Furthermore, human iPSC-derived cardiomyocytes showed depolarization of membrane potential in response to 1 mM [K+]e, while the knockdown of TWIK-1 expression eliminated this phenomenon. CONCLUSIONS: These results demonstrate that leak Na+ currents conducted by TWIK-1 channels contribute to the depolarization of membrane potential induced by low [K+]e in human cardiomyocytes.


Subject(s)
Potassium Channels, Tandem Pore Domain , Cricetinae , Animals , Humans , CHO Cells , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/metabolism , Cricetulus , Myocytes, Cardiac/metabolism , Potassium/metabolism
9.
Anesthesiology ; 139(1): 63-76, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37027798

ABSTRACT

BACKGROUND: A variety of molecular targets for volatile anesthetics have been suggested, including the anesthetic-sensitive potassium leak channel, TREK-1. Knockout of TREK-1 is reported to render mice resistant to volatile anesthetics, making TREK-1 channels compelling targets for anesthetic action. Spinal cord slices from mice, either wild type or an anesthetic- hypersensitive mutant, Ndufs4, display an isoflurane-induced outward potassium leak that correlates with their minimum alveolar concentrations and is blocked by norfluoxetine. The hypothesis was that TREK-1 channels conveyed this current and contribute to the anesthetic hypersensitivity of Ndufs4. The results led to evaluation of a second TREK channel, TREK-2, in control of anesthetic sensitivity. METHODS: The anesthetic sensitivities of mice carrying knockout alleles of Trek-1 and Trek-2, the double knockout Trek-1;Trek-2, and Ndufs4;Trek-1 were measured. Neurons from spinal cord slices from each mutant were patch clamped to characterize isoflurane-sensitive currents. Norfluoxetine was used to identify TREK-dependent currents. RESULTS: The mean values for minimum alveolar concentrations (± SD) between wild type and two Trek-1 knockout alleles in mice (P values, Trek-1 compared to wild type) were compared. For wild type, minimum alveolar concentration of halothane was 1.30% (0.10), and minimum alveolar concentration of isoflurane was 1.40% (0.11); for Trek-1tm1Lex, minimum alveolar concentration of halothane was 1.27% (0.11; P = 0.387), and minimum alveolar concentration of isoflurane was 1.38% (0.09; P = 0.268); and for Trek-1tm1Lzd, minimum alveolar concentration of halothane was 1.27% (0.11; P = 0.482), and minimum alveolar concentration of isoflurane was 1.41% (0.12; P = 0.188). Neither allele was resistant for loss of righting reflex. The EC50 values of Ndufs4;Trek-1tm1Lex did not differ from Ndufs4 (for Ndufs4, EC50 of halothane, 0.65% [0.05]; EC50 of isoflurane, 0.63% [0.05]; and for Ndufs4;Trek-1tm1Lex, EC50 of halothane, 0.58% [0.07; P = 0.004]; and EC50 of isoflurane, 0.61% [0.06; P = 0.442]). Loss of TREK-2 did not alter anesthetic sensitivity in a wild-type or Trek-1 genetic background. Loss of TREK-1, TREK-2, or both did not alter the isoflurane-induced currents in wild-type cells but did cause them to be norfluoxetine insensitive. CONCLUSIONS: Loss of TREK channels did not alter anesthetic sensitivity in mice, nor did it eliminate isoflurane-induced transmembrane currents. However, the isoflurane-induced currents are norfluoxetine-resistant in Trek mutants, indicating that other channels may function in this role when TREK channels are deleted.


Subject(s)
Anesthetics, Inhalation , Isoflurane , Potassium Channels, Tandem Pore Domain , Animals , Mice , Isoflurane/pharmacology , Halothane/pharmacology , Anesthetics, Inhalation/pharmacology , Mice, Knockout , Potassium Channels, Tandem Pore Domain/genetics , Electron Transport Complex I/genetics
10.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37047271

ABSTRACT

Oligomeric ion channels are abundant in nature. However, the recombinant expression in cell culture-based systems remains tedious and challenging due to negative side effects, limiting the understanding of their role in health and disease. Accordingly, in this work, we demonstrate the cell-free synthesis (CFS) as an alternative platform to study the assembly of two-pore domain potassium channels (K2P) within endogenous endoplasmic reticulum-derived microsomes. Exploiting the open nature of CFS, we investigate the cotranslational translocation of TREK-2 into the microsomes and suggest a cotranslational assembly with typical single-channel behavior in planar lipid-bilayer electrophysiology. The heteromeric assembly of K2P channels is a contentious matter, accordingly we prove the successful assembly of TREK-2 with TWIK-1 using a biomolecular fluorescence complementation assay, Western blot analysis and autoradiography. The results demonstrate that TREK-2 homodimer assembly is the initial step, followed by heterodimer formation with the nascent TWIK-1, providing evidence of the intergroup heterodimerization of TREK-2 and TWIK-1 in eukaryotic CFS. Since K2P channels are involved in various pathophysiological conditions, including pain and nociception, CFS paves the way for in-depth functional studies and related pharmacological interventions. This study highlights the versatility of the eukaryotic CFS platform for investigating ion channel assembly in a native-like environment.


Subject(s)
Eukaryota , Potassium Channels, Tandem Pore Domain , Eukaryota/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Cell-Free System/metabolism , Dimerization , Biological Assay
11.
Nat Commun ; 14(1): 1077, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36841877

ABSTRACT

Tandem pore domain (K2P) potassium channels modulate resting membrane potentials and shape cellular excitability. For the mechanosensitive subfamily of K2Ps, the composition of phospholipids within the bilayer strongly influences channel activity. To examine the molecular details of K2P lipid modulation, we solved cryo-EM structures of the TREK1 K2P channel bound to either the anionic lipid phosphatidic acid (PA) or the zwitterionic lipid phosphatidylethanolamine (PE). At the extracellular face of TREK1, a PA lipid inserts its hydrocarbon tail into a pocket behind the selectivity filter, causing a structural rearrangement that recapitulates mutations and pharmacology known to activate TREK1. At the cytoplasmic face, PA and PE lipids compete to modulate the conformation of the TREK1 TM4 gating helix. Our findings demonstrate two distinct pathways by which anionic lipids enhance TREK1 activity and provide a framework for a model that integrates lipid gating with the effects of other mechanosensitive K2P modulators.


Subject(s)
Potassium Channels, Tandem Pore Domain , Potassium Channels, Tandem Pore Domain/genetics , Phospholipids , Membrane Potentials , Potassium/metabolism
12.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L64-L75, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36410022

ABSTRACT

Influenza-A virus (IAV) infects yearly an estimated one billion people worldwide, resulting in 300,000-650,000 deaths. Preventive vaccination programs and antiviral medications represent the mainstay of therapy, but with unacceptably high morbidity and mortality rates, new targeted therapeutic approaches are urgently needed. Since inflammatory processes are commonly associated with measurable changes in the cell membrane potential (Em), we investigated whether Em hyperpolarization via TREK-1 (K2P2.1) K+ channel activation can protect against influenza-A virus (IAV)-induced pneumonia. We infected mice with IAV, which after 5 days caused 10-15% weight loss and a decrease in spontaneous activity, representing a clinically relevant infection. We then started a 3-day intratracheal treatment course with the novel TREK-1 activating compounds BL1249 or ML335. We confirmed TREK-1 activation with both compounds in untreated and IAV-infected primary human alveolar epithelial cells (HAECs) using high-throughput fluorescent imaging plate reader (FLIPR) assays. In mice, TREK-1 activation with BL1249 and ML335 counteracted IAV-induced histological lung injury and decrease in lung compliance and improved BAL fluid total protein levels, cell counts, and inflammatory IL-6, IP-10/CXCL-10, MIP-1α, and TNF-α levels. To determine whether these anti-inflammatory effects were mediated by activation of alveolar epithelial TREK-1 channels, we studied the effects of BL1249 and ML335 in IAV-infected HAEC, and found that TREK-1 activation decreased IAV-induced inflammatory IL-6, IP-10/CXCL10, and CCL-2 secretion. Dissection of TREK-1 downstream signaling pathways and construction of protein-protein interaction (PPI) networks revealed NF-κB1 and retinoic acid-inducible gene-1 (RIG-1) cascades as the most likely targets for TREK-1 protection. Therefore, TREK-1 activation may represent a novel therapeutic approach against IAV-induced lung injury.


Subject(s)
Acute Lung Injury , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Potassium Channels, Tandem Pore Domain , Animals , Humans , Mice , Acute Lung Injury/pathology , Chemokine CXCL10/metabolism , Influenza, Human/pathology , Interleukin-6/metabolism , Lung/metabolism , Orthomyxoviridae Infections/pathology , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism
13.
J Craniofac Surg ; 34(1): e25-e28, 2023.
Article in English | MEDLINE | ID: mdl-35949010

ABSTRACT

Birk-Barel intellectual disability dimorphism syndrome, also referred to as KCNK9 imprinting syndrome, is an exceedingly rare condition described in under 20 cases that presents with intellectual disability, hypotonia, scoliosis, dysphonia, dysphagia, and craniofacial dysmorphic features. The condition follows an autosomal dominant pattern of inheritance in the maternally expressed KCNK9 gene on chromosome 8. Due to the complexity of presentation, patients with Birk-Barel syndrome are optimally managed by a multidisciplinary team including a craniofacial surgeon. Previously described craniofacial dysmorphic features include micrognathia, cleft palate, dolichocephaly, broad nasal tip, and broad philtrum, among others. Here the authors describe a genetically confirmed case that has been managed in our institution's multidisciplinary cleft and craniofacial clinic. The authors aim to discuss Birk-Barel syndrome for a surgical and craniofacial audience with considerations for operative management in the context of a multidisciplinary team.


Subject(s)
Craniofacial Abnormalities , Intellectual Disability , Potassium Channels, Tandem Pore Domain , Humans , Intellectual Disability/genetics , Intellectual Disability/surgery , Sex Characteristics , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/surgery , Muscle Hypotonia/genetics , Syndrome , Potassium Channels, Tandem Pore Domain/genetics
14.
Molecules ; 27(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36500386

ABSTRACT

TWIK-related acid-sensitive K+ (TASK) channels, including TASK-1, TASK-3, and TASK-5, are important members of the two-pore domain potassium (K2P) channel family. TASK-5 is not functionally expressed in the recombinant system. TASK channels are very sensitive to changes in extracellular pH and are active during all membrane potential periods. They are similar to other K2P channels in that they can create and use background-leaked potassium currents to stabilize resting membrane conductance and repolarize the action potential of excitable cells. TASK channels are expressed in both the nervous system and peripheral tissues, including excitable and non-excitable cells, and are widely engaged in pathophysiological phenomena, such as respiratory stimulation, pulmonary hypertension, arrhythmia, aldosterone secretion, cancers, anesthesia, neurological disorders, glucose homeostasis, and visual sensitivity. Therefore, they are important targets for innovative drug development. In this review, we emphasized the recent advances in our understanding of the biophysical properties, gating profiles, and biological roles of TASK channels. Given the different localization ranges and biologically relevant functions of TASK-1 and TASK-3 channels, the development of compounds that selectively target TASK-1 and TASK-3 channels is also summarized based on data reported in the literature.


Subject(s)
Potassium Channels, Tandem Pore Domain , Humans , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/chemistry , Membrane Potentials , Potassium/metabolism , Action Potentials , Arrhythmias, Cardiac
15.
Biomolecules ; 12(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36291551

ABSTRACT

Pulmonary arterial hypertension (PAH) is a devastating disease with high morbidity and mortality. Deleterious remodeling in the pulmonary arterial system leads to irreversible arterial constriction and elevated pulmonary arterial pressures, right heart failure, and eventually death. The difficulty in treating PAH stems in part from the complex nature of disease pathogenesis, with several signaling compounds known to be involved (e.g., endothelin-1, prostacyclins) which are indeed targets of PAH therapy. Over the last decade, potassium channelopathies were established as novel causes of PAH. More specifically, loss-of-function mutations in the KCNK3 gene that encodes the two-pore-domain potassium channel KCNK3 (or TASK-1) and loss-of-function mutations in the ABCC8 gene that encodes a key subunit, SUR1, of the ATP-sensitive potassium channel (KATP) were established as the first two potassium channelopathies in human cohorts with pulmonary arterial hypertension. Moreover, voltage-gated potassium channels (Kv) represent a third family of potassium channels with genetic changes observed in association with PAH. While other ion channel genes have since been reported in association with PAH, this review focuses on KCNK3, KATP, and Kv potassium channels as promising therapeutic targets in PAH, with recent experimental pharmacologic discoveries significantly advancing the field.


Subject(s)
Channelopathies , Hypertension, Pulmonary , Potassium Channels, Tandem Pore Domain , Potassium Channels, Voltage-Gated , Pulmonary Arterial Hypertension , Humans , Potassium Channels, Tandem Pore Domain/genetics , Channelopathies/drug therapy , Channelopathies/genetics , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Endothelin-1 , Nerve Tissue Proteins/metabolism , Familial Primary Pulmonary Hypertension/genetics , Prostaglandins I , Potassium , KATP Channels/genetics
16.
J Biol Chem ; 298(10): 102447, 2022 10.
Article in English | MEDLINE | ID: mdl-36063992

ABSTRACT

Two-pore domain K+ channels (K2P channels), active as dimers, produce inhibitory currents regulated by a variety of stimuli. Among them, TWIK1-related alkalinization-activated K+ channel 1 (TALK1), TWIK1-related alkalinization-activated K+ channel 2 (TALK2), and TWIK1-related acid-sensitive K+ channel 2 (TASK2) form a subfamily of structurally related K2P channels stimulated by extracellular alkalosis. The human genes encoding these proteins are clustered at chromosomal region 6p21 and coexpressed in multiple tissues, including the pancreas. The question whether these channels form functional heteromers remained open. By analyzing single-cell transcriptomic data, we show that these channels are coexpressed in insulin-secreting pancreatic ß-cells. Using in situ proximity ligation assay and electrophysiology, we show that they form functional heterodimers both upon heterologous expression and under native conditions in human pancreatic ß-cells. We demonstrate that heteromerization of TALK2 with TALK1 or with TASK2 endows TALK2 with sensitivity to extracellular alkalosis in the physiological range. We further show that the association of TASK2 with TALK1 and TALK2 increases their unitary conductance. These results provide a new example of heteromerization in the K2P channel family expanding the range of the potential physiological and pathophysiological roles of TALK1/TALK2/TASK2 channels, not only in insulin-secreting cells but also in the many other tissues in which they are coexpressed.


Subject(s)
Alkalosis , Insulin-Secreting Cells , Potassium Channels, Tandem Pore Domain , Humans , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Insulin-Secreting Cells/metabolism , Hydrogen-Ion Concentration , Insulin/metabolism , Potassium/metabolism
17.
BMB Rep ; 55(11): 565-570, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36016502

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive and devastating disease whose pathogenesis is associated with a phenotypic switch of pulmonary arterial vascular smooth muscle cells (PASMCs). Bone morphogenetic protein (BMP) signaling and potassium two pore domain channel subfamily K member 3 (KCNK3) play crucial roles in PAH pathogenesis. However, the relationship between BMP signaling and KCNK3 expression in the PASMC phenotypic switching process has not been studied. In this study, we explored the effect of BMPs on KCNK3 expression and the role of KCNK3 in the BMP-mediated PASMC phenotypic switch. Expression levels of BMP receptor 2 (BMPR2) and KCNK3 were downregulated in PASMCs of rats with PAH compared to those in normal controls, implying a possible association between BMP/BMPR2 signaling and KCNK3 expression in the pulmonary vasculature. Treatment with BMP2, BMP4, and BMP7 significantly increased KCNK3 expression in primary human PASMCs (HPASMCs). BMPR2 knockdown and treatment with Smad1/5 signaling inhibitor substantially abrogated the BMP-induced increase in KCNK3 expression, suggesting that KCNK3 expression in HPASMCs is regulated by the canonical BMP-BMPR2-Smad1/5 signaling pathway. Furthermore, KCNK3 knockdown and treatment with a KCNK3 channel blocker completely blocked BMP-mediated anti-proliferation and expression of contractile marker genes in HPAMSCs, suggesting that the expression and functional activity of KCNK3 are required for BMP-mediated acquisition of the quiescent PASMC phenotype. Overall, our findings show a crosstalk between BMP signaling and KCNK3 in regulating the PASMC phenotype, wherein BMPs upregulate KCNK3 expression and KCNK3 then mediates BMP-induced phenotypic switching of PASMCs. Our results indicate that the dysfunction and/or downregulation of BMPR2 and KCNK3 observed in PAH work together to induce aberrant changes in the PASMC phenotype, providing insights into the complex molecular pathogenesis of PAH. [BMB Reports 2022; 55(11): 565-570].


Subject(s)
Hypertension, Pulmonary , Muscle, Smooth, Vascular , Nerve Tissue Proteins , Potassium Channels, Tandem Pore Domain , Animals , Humans , Rats , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Proteins/genetics , Cell Proliferation , Cells, Cultured , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype , Signal Transduction , Potassium Channels, Tandem Pore Domain/genetics , Nerve Tissue Proteins/genetics
18.
Genome Med ; 14(1): 62, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35698242

ABSTRACT

BACKGROUND: Genomics enables individualized diagnosis and treatment, but large challenges remain to functionally interpret rare variants. To date, only one causative variant has been described for KCNK9 imprinting syndrome (KIS). The genotypic and phenotypic spectrum of KIS has yet to be described and the precise mechanism of disease fully understood. METHODS: This study discovers mechanisms underlying KCNK9 imprinting syndrome (KIS) by describing 15 novel KCNK9 alterations from 47 KIS-affected individuals. We use clinical genetics and computer-assisted facial phenotyping to describe the phenotypic spectrum of KIS. We then interrogate the functional effects of the variants in the encoded TASK3 channel using sequence-based analysis, 3D molecular mechanic and dynamic protein modeling, and in vitro electrophysiological and functional methodologies. RESULTS: We describe the broader genetic and phenotypic variability for KIS in a cohort of individuals identifying an additional mutational hotspot at p.Arg131 and demonstrating the common features of this neurodevelopmental disorder to include motor and speech delay, intellectual disability, early feeding difficulties, muscular hypotonia, behavioral abnormalities, and dysmorphic features. The computational protein modeling and in vitro electrophysiological studies discover variability of the impact of KCNK9 variants on TASK3 channel function identifying variants causing gain and others causing loss of conductance. The most consistent functional impact of KCNK9 genetic variants, however, was altered channel regulation. CONCLUSIONS: This study extends our understanding of KIS mechanisms demonstrating its complex etiology including gain and loss of channel function and consistent loss of channel regulation. These data are rapidly applicable to diagnostic strategies, as KIS is not identifiable from clinical features alone and thus should be molecularly diagnosed. Furthermore, our data suggests unique therapeutic strategies may be needed to address the specific functional consequences of KCNK9 variation on channel function and regulation.


Subject(s)
Intellectual Disability , Potassium Channels, Tandem Pore Domain , Genotype , Humans , Intellectual Disability/genetics , Muscle Hypotonia , Mutation , Phenotype , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism
19.
J Pharmacol Sci ; 148(3): 286-294, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35177207

ABSTRACT

Activation of hepatic stellate cells (HSCs) causes hepatic fibrosis and results in chronic liver diseases. Although activated HSC functions are facilitated by an increase in the cytosolic Ca2+ concentration ([Ca2+]cyt), the pathophysiological roles of ion channels are largely unknown. In the present study, functional analyses of the two-pore domain K+ (K2P) channels, which regulate the resting membrane potential and [Ca2+]cyt, were performed using the human HSC line, LX-2. Expression analyses revealed that TREK1 (also known as KCNK2 and K2P2.1) channels are expressed in LX-2 cells. Whole-cell K+ currents were activated by 10 µM arachidonic acid and the activation was abolished by 100 µM tetrapentylammonium, which are pharmacological characteristics of TREK1 channels. The siRNA knockdown of TREK1 channels caused membrane depolarization and reduced [Ca2+]cyt. In addition, TREK1 knockdown downregulated the gene expression of collage type I and platelet-derived growth factor. Furthermore, TREK1 knockdown inhibited the proliferation of LX-2 cells. In conclusion, the activity of TREK1 channels determines the resting membrane potential and [Ca2+]cyt, which play a role in extracellular matrix production and cell proliferation in HSCs. This study may help elucidate the molecular mechanism underlying hepatic fibrosis in HSCs and provide a potential therapeutic target for hepatic fibrosis.


Subject(s)
Cell Proliferation/genetics , Hepatic Stellate Cells/pathology , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/physiology , Calcium/metabolism , Calcium Signaling/genetics , Calcium Signaling/physiology , Cell Line , Collagen Type I/genetics , Collagen Type I/metabolism , Gene Expression/genetics , Humans , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Membrane Potentials/genetics , Potassium Channels, Tandem Pore Domain/genetics
20.
Biomolecules ; 12(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35204766

ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. The underlying pathogenetic mechanisms are heterogeneous and current therapies aim to decrease pulmonary vascular resistance but no curative treatments are available. Causal genetic variants can be identified in ~13% of adults and 43% of children with PAH. Knowledge of genetic diagnoses can inform clinical management of PAH, including multimodal medical treatment, surgical intervention and transplantation decisions, and screening for associated conditions, as well as risk stratification for family members. Roles for rare variants in three channelopathy genes-ABCC8, ATP13A3, and KCNK3-have been validated in multiple PAH cohorts, and in aggregate explain ~2.7% of PAH cases. Complete or partial loss of function has been demonstrated for PAH-associated variants in ABCC8 and KCNK3. Channels can be excellent targets for drugs, and knowledge of mechanisms for channel mutations may provide an opportunity for the development of PAH biomarkers and novel therapeutics for patients with hereditary PAH but also potentially more broadly for all patients with PAH.


Subject(s)
Channelopathies , Potassium Channels, Tandem Pore Domain , Pulmonary Arterial Hypertension , Adenosine Triphosphatases/genetics , Adult , Child , Humans , Membrane Transport Proteins/genetics , Mutation , Nerve Tissue Proteins/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Pulmonary Arterial Hypertension/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...